10

25

30

MS174304.1 Express Mail No. EL798606476US

Title: Asynchronous Pattern

Technical Field

The present invention relates generally to asynchronous method calling and more
particularly to a system and method for making asynchronous calls using a common

pattern.

Background of the Invention

Conventional synchronous method calls, where the caller blocks until the
completion of processing performed by the callee, may provide unsatisfactory results in
some calling situations. By way of illustration, if the callee takes a long time to
complete, the caller may be blocked for an unacceptable period of time waiting for the
callee to return. Thus, resources (e.g., memory, processor cycles) associated with a
blocked caller thread may be unavailable for other threads, reducing system performance.
By way of further illustration, if the caller desires to make multiple calls to one or more
callees, where, from the caller’s point of view, such calls can be performed substantially
in parallel, conventional synchronous method calling techniques may generate an
unwanted, substantially serial performance.

Conventionally, synchronous calls can cause a thread to block. Threads are
computationally and memory expensive. Therefore, having threads blocked can
negatively impact system performance. It would be preferable to allow threads to enter a
state (e.g., run to completion) where the resource can be freed, and thus reallocated,
rather than being consumed by a blocked thread.

Due, at least in part, to undesired blocking, undesired resource consumption and
undesired serial performance results from synchronous method calling a number of
asynchronous method calling techniques have developed. Such asynchronous techniques
are, in general, narrowly tailored to provide asynchronous calling capability for a specific
programmatic situation. Such diverse, individually tailored asynchronous method calling
techniques do not, in general, provide an efficient model to deal with asynchronous
operations via a consistent programming model. Furthermore, objects employing such
individually tailored asynchronous method calling techniques may require

reprogramming to support asynchronous behavior. Such reprogramming may not be



10

25

30

MS174304.1

possible for existing objects, and thus it may be difficult, or impossible, to add

asynchronous behavior to such existing objects.

Summary of the Invention

The following presents a simplified summary of the invention in order to provide
a basic understanding of some aspects of the invention. This summary is not an extensive
overview of the invention. It is not intended to identify key/critical elements of the
invention or to delineate the scope of the invention. Its sole purpose is to present some
concepts of the invention in a simplified form as a prelude to the more detailed
description that is presented later.

Conventionally, synchronous method calls can cause a thread to block.
Asynchronous calls typically do not lead to threads blocking. Greater processing
efficiency can be achieved if threads can enter a state (e.g., run to completion) where
resources associated with the thread can be freed, and thus reallocated, rather than being
consumed by a blocked thread. Thus, in various contexts, asynchronous calls are
employed in place of synchronous calls. Therefore, call sequences generated by the
present invention facilitate reducing the likelihood that a thread will block by facilitating
asynchronous calls, whereby a thread can cause a target method on a server to be invoked
without having to synchronously wait for the call to complete. By way of illustration, a
client may request ten images for a web page. Conventionally, if such requests are made
by one thread, then the thread may generate ten synchronous calls, where the single
thread blocks ten times while waiting for the images. This can negatively impact system
performance. Similarly, if ten separate threads are employed to make the ten
synchronous calls, ten threads may be blocked, consuming system resources and again
negatively impacting system performance. By employing asynchronous calls that are
facilitated by the present invention, one thread can make ten asynchronous calls without
incurring ten separate call/block/return/wake up sequences.

By establishing a callback routine during the begin asynchronous portion of a
synchronous call, where the callback routine can be invoked by a target method upon its

completion, the present invention facilitates a first thread beginning the asynchronous call



10

25

30

MS174304.1

(and then running to completion without blocking due to the method call) and a second
thread finishing the asynchronous call (and similarly running to completion without
blocking due to the method call). Thus, resources consumed by blocked threads are
reduced, providing advantages over conventional systems.

The present invention provides a system and method for converting synchronous
calls to asynchronous calls using a common pattern. The pattern breaks a regular
synchronous call into constituent parts, including, but not limited to, a begin operation, an
end operation and a result and/or state object. The state object can be employed to obtain
status concerning the asynchronous call while the result object can be employed to
facilitate passing results to a caller. In one example of the present invention, a callback
routine may be established by the begin operation. The callback routine can be invoked
when the call completes and can be employed to trigger end operation processing.

The present invention further permits a caller to determine whether a particular
call should be asynchronous without requiring the called object to perform additional
programming to support the asynchronous behavior of a calling client. A called object
may naively provide wrappers to expose an asynchronous view of a synchronous
operation (potentially leveraging existing asynchronous features such as blocking and
asynchronous delegates). A delegate object contains information employed in calling a
specific method on a specific object. Conceptually, a delegate can be treated as a smart
method pointer. A callback method is an example of a delegate. A called object, may,
however, decide to implement support for asynchronous behavior and thus perform
additional programming (e.g., for efficiency reasons). If such a called object implements
support for asynchronous behavior in accordance with the asynchronous pattern provided
by the present invention, then further improvements in performance may be experienced.

Threads that employ the present invention to make asynchronous calls have
options available for monitoring completion of the asynchronous operation. For
example, a client may perform actions including, but not limited to, polling a property in
the state object to determine whether asynchronous operation has completed, attempt to
complete the operation prematurely (and thereby block until the operation completes),

wait on a result object where periodic timeouts can be employed to wakeup and monitor



10

25

30

MS174304.1

the result and completing the operation inside an asynchronous callback routine
(executed by the called object when the operation is finished).

Thus, the present invention provides an efficient model to employ asynchronous
operations via a consistent programming model that can be employed in diverse
application environments. Once a developer understands how to employ the
asynchronous pattern in one area (e.g., I/O classes), then the developer can employ the
asynchronous pattern in other areas (e.g., network classes, messaging classes, remote
client/server communication classes, printing classes, web classes, forms classes, XML
classes, delegates). Thus, the present invention makes it more likely that programmers
will expend the time and energy to learn the asynchronous pattern.

To the accomplishment of the foregoing and related ends, certain illustrative
aspects of the invention are described herein in connection with the following description
and the annexed drawings. These aspects are indicative, however, of but a few of the
various ways in which the principles of the invention may be employed and the present
invention is intended to include all such aspects and their equivalents. Other advantages
and novel features of the invention may become apparent from the following detailed

description of the invention when considered in conjunction with the drawings.

Brief Description of the Drawings

Fig. 1 is a schematic block diagram illustrating the conversion of a synchronous
method call to an asynchronous method call by employing a pattern generator, in
accordance with an aspect of the present invention.

Prior Art Fig. 2 illustrates state transitions in a conventional synchronous calling
system.

Fig. 3 illustrates state transitions in a system where synchronous calls have been
converted to asynchronous calls via a pattern generator, in accordance with an aspect of
the present invention.

Fig. 4 is a schematic block diagram illustrating a system for providing
asynchronous method calls via a common pattern, in accordance with an aspect of the

present invention.



10

25

30

MS174304.1

Fig. 5 is a schematic block diagram illustrating a system for providing
asynchronous method calls via a common pattern and a call result poller, in accordance
with an aspect of the present invention.

Fig. 6 is a schematic block diagram illustrating a system for providing
asynchronous method calls via a common pattern and a callback routine, in accordance
with an aspect of the present invention.

Fig. 7 is a schematic block diagram illustrating a system for providing
asynchronous method calls via a common pattern and a wait handler, in accordance with
an aspect of the present invention.

Fig. 8 is a flow chart illustrating a method for creating an asynchronous method
call, in accordance with an aspect of the present invention.

Fig. 9 is a flowchart illustrating a method for making an asynchronous method
call that employs a callback routine in accordance with an aspect of the present invention.

Fig. 10 is a flowchart illustrating a method for making an asynchronous method
call that employs a polling completion technique in accordance with an aspect of the
present invention.

Fig. 11 is a flowchart illustrating a method for making an asynchronous method
call that employs a blocking technique in accordance with an aspect of the present
invention.

Fig. 12 is a flowchart illustrating a method for making an asynchronous method
call that employs a waitable object in accordance with an aspect of the present invention.

Fig. 13 is a schematic block diagram of an exemplary operating environment for a
system configured in accordance with the present invention.

Fig. 14 is a schematic block diagram of an exemplary communication
environment for a method performing in accordance with the present invention.

Fig. 15 is a schematic block diagram illustrating an example input/output
application of the present invention.

Fig. 16 is a schematic block diagram illustrating an example web server

application of the present invention.



10

25

30

MS174304.1

Detailed Description of the Invention

The present invention is now described with reference to the drawings, wherein
like reference numerals are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present invention. It may be evident,
however, that the present invention may be practiced without these specific details. In
other instances, well-known structures and devices are shown in block diagram form in
order to facilitate describing the present invention.

As used in this application, the term “component” is intended to refer to a
computer-related entity, either hardware, a combination of hardware and software,
software, or software in execution. For example, a component may be, but is not limited
to being, a process running on a processor, a processor, an object, an executable, a thread
of execution, a program, and a computer. By way of illustration, both an application
running on a server and the server can be a component.

Concerning interfaces, classes not related by inheritance may, nevertheless, share
common functionality. For example, many classes may contain methods for saving their
state to and from permanent storage. For this purpose, classes not related by inheritance
may support interfaces allowing programmers to code for the classes’ shared behavior
based on their shared interface type and not their exact types. Thus, as used in this
application, the term “interface” refers to a partial specification of a type. It is a contract
that binds implementers to provide implementations of the methods contained in the
interface. Object types may support many interface types, and many different object
types would normally support an interface type. By definition, an interface type can
never be an object type or an event type. Interfaces may extend other interface types.
Thus, an interface may contain methods (both class and instance), static fields, properties
and events. However, unlike an object, an interface cannot contain instance fields.

It is to be appreciated that various aspects of the present invention may employ
technologies associated with facilitating unconstrained optimization and/or minimization
of error costs. Thus, non-linear training systems/methodologies (e.g., back propagation,

Bayesian, fuzzy sets, non-linear regression, or other neural networking paradigms



10

25

30

MS174304.1

including mixture of experts, cerebella model arithmetic computer (CMACS), radial basis
functions, directed search networks and function link networks) may be employed.

Referring initially to Fig. 1, a system 100 for converting a synchronous method
call 110 on a target method to an asynchronous method call 140 is illustrated. The
system 100 includes a pattern generator 120 that can break the synchronous method call
110 into one or more constituent parts (e.g., a begin asynchronous operation method, an
end asynchronous operation method, an asynchronous call state object, an asynchronous
call result object) and a pattern data store 130 that stores data associated with converting
the synchronous method call 110 to the asynchronous method call 140. By employing
the pattern generator 120 and the data stored in the pattern data store 130 the present
invention facilitates the caller of a method deciding whether a particular call should be
asynchronous and mitigates the need for a called object to be reprogrammed for
supporting asynchronous behavior by its clients, providing advantages over conventional
systems where it is typically the called object that determines whether it will proceed
synchronously or asynchronously.

The pattern generator 120 may be a computer-related entity, either hardware, a
combination of hardware and software, software, or software in execution. For example,
the pattern generator 120 may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program, and a
computer. In one example of the present invention, the pattern generator 120 is
implemented in a compiler.

The pattern data store 130 may be implemented in one or more stand-alone and/or
distributed, co-operating data structures including, but not limited to, lists, linked lists,
arrays, records, tables, databases, data cubes, heaps and stacks. The data stored in the
pattern data store 130 includes, but is not limited to, thread pool information (e.g., name,
location, state), delegate information (e.g., names, locations, states, capabilities), wait
handler information (e.g., object reference, state), syntax rules (e.g., naming conventions)
and semantic rules (e.g., constituent parts lists).

Conventionally, a target method is passed parameters that can include, but are not
limited to, input parameters, input/output parameters, output parameters and by reference

parameters. Thus, in one example of the present invention, a begin asynchronous



MS174304.1

operation method generated by the pattern generator 120 accepts inputs including input
parameters presented to the target method, input/output parameters presented to the target
method and parameters passed by reference to the target method. Furthermore, to
facilitate invoking processing associated with ending the asynchronous call, the begin

5 asynchronous operation method also accepts the address of an asynchronous callback
routine that can be invoked when the target method completes. To facilitate tracking and
logging state associated with the asynchronous call and the target method, the begin
asynchronous operation method also accepts an asynchronous call state object as an
input. In the example, the begin asynchronous operation method returns the

10 asynchronous result object as an output to the process and/or thread that called the begin

asynchronous operation method. Thus, the caller of the begin asynchronous operation

method can supply information to the invoker via a waitable object, which is a

synchronization object that can be employed to facilitate performing processing at a

desired time (e.g., in a callback routine that waited for a target method to complete).

In one example of the present invention an end asynchronous operation method
generated by the pattern generator 120 can similarly accept inputs including input/output
parameters presented to the target method, output parameters presented to the target
method, parameters passed by reference to the target method and the asynchronous call
result object. The end asynchronous operation method will then return a type consistent

with the return type of the target method.

An asynchronous call result object generated by the pattern generator 120 may

have fields including, but not limited to a first field for recording whether the begin
asynchronous operation completed asynchronously and a second field for recording
whether a server completed processing the target method. To facilitate controlling when

25 processing associated with ending asynchronous operations is to be performed, the
asynchronous call result object may be a waitable object.

To facilitate making the pattern provided by the present invention available in a
variety of contexts, and thus provide uniformity advantages over conventional systems, in
one example of the present invention, the asynchronous call result object implements an

30 interface with methods that include, but are not limited to, an asynchronous call state

object get method, a wait handler object get method, a synchronous call completed field



MS174304.1

get method and a target method call completed field get method. Thus, the pattern may
be employed in contexts including, but not limited to, file input/output, stream
input/output, socket input/output, networking, remoting channels (employed to transport
messages to and from remote objects), proxies, printing, web forms, web services and
5 messaging message queues.

An example of a class (PrimeFactorizer) from which objects that conventionally
would be called synchronously, and code that employs the pattern to facilitate calling the
objects asynchronously illustrates methods and objects described above.

The class PrimeFactorizer factors a number into its two prime factors.

10 public class PrimeFactorizer
{
// method Factorize returns a boolean true if the input parameter factorizableNum can
// be factorized, otherwise, returns a boolean false if factorizableNum is prime
/1 if factorizableNum can be factored, factors are placed in primefactor] and 2
// method may take a long time to complete, therefore, the present invention can
// break this call down into constituent parts (e.g., begin, end, state/result object(s)
public bool Factorize(int factorizableNum, ref int primefactor1, ref int primefactor2)

{

// determine whether factorizableNum is prime

/1 if factorizable, return true and place factors in primefactor] and primefactor?2

// if prime, return false

}

It will be apparent to one skilled in the art that in certain situations (e.g., large
25 input number) objects of the class PrimeFactorizer may take a substantial amount of time
to compute. Thus, being able to call such an object asynchronously, and thus being able
to avoid blocking while waiting for the processing to complete can provide advantages
over conventional systems where such synchronous to asynchronous conversion is not
possible. For example, threads may be allowed to run to completion without blocking
30 and resources that would otherwise be consumed by such blocked threads may be freed to

produce performance improvements. The following code, generated by a compiler



10

25

30

MS174304.1

configured to operate in accordance with the present invention, illustrates a caller
employing the present invention to define a pattern for invoking the Factorize method

asynchronously:

// Define a delegate

public delegate bool FactorizingCallback(
int factorizableNum,
ref int primefactorl,

ref int primefactor2);

// Create an instance of the Factorizer

PrimeFactorizer pf = new PrimeFactorizer();

// Create a delegate on the Factorize method on the Factorizer

FactorizingCallback fd = new FactorizingCallback(pf.Factorize);

When a compiler that operates in accordance with the present invention emits the
FactorizingCallback delegate class after parsing its definition, it will generate

BeginInvoke and EndInvoke methods in addition to an Invoke method. For example:

public class FactorizingCallback : delegate
{
// this is one of the constituent parts, a synchronous method for
// calling the target method of the delegate
public bool Invoke(
int factorizableNum,
ref int primefactorl,

ref int primefactor2);
// this is another of the constituent parts, the method that can be employed

// to begin asynchronous operations, possibly queued via a threadpool

// this method takes inputs from a calling client and kicks off asynchronous operations

10



MS174304.1

// it can also establish the callback delegate to call when asynchronous operation
// is complete this method returns a waitable object that implements an
// interface (e.g., IAsyncResult) that can be used by the calling client to determine
// state and/or results associated with the asynchronous call
5 public IAsyncResult Beginlnvoke(
int factorizableNum,
ref int primefactorl,
ref int primefactor2,
AsyncCallback cb,
10 Object AsyncState

)

// this is another of the constituent parts, the method that can be employed

// to end asynchronous operations

// this method accepts results from the target method and returns the type associated
// with the target method signature

public bool EndInvoke(

ref int primefactorl,
ref int primefactor2,

IAsyncResult ar);

Thus, the synchronous call, which would cause a compiler to generate an invoke
method, has been broken down into constituent parts (e.g., a begin invoke method, an end
invoke method, a state object and a result object). While one specific example of the

25 constituent parts and related objects (e.g., Invoke, public IAsyncResult BeginInvoke,
EndInvoke, Object AsyncState, and IAsyncResult ar) with specific syntax are illustrated
above, it is to be appreciated that the examples are merely illustrative, and not limiting,
and that different compilers and/or different pattern generators 120 may produce
constituent parts with different syntax and/or styles.

30 One input supplied to the BeginInvoke method illustrated above was the address

of a callback routine. Such a callback routine can be employed by one example of the

11



MS174304.1

present invention to facilitate processing associated with ending the asynchronous call.
For example, the callback routine can be invoked when the target method (e.g., Factorize)
has completed. The following code demonstrates a client-side programming model for

invoking the Factorize method asynchronously.

5
// This example class receives the results of the Async call on a callback
using System;
using System.Runtime.Remoting;
10 public delegate bool FactorizingCallback(

int factorizableNum,
ref int primefactorl,

ref int primefactor2);

// Class ProcessFactorizedNumber receives a callback when the the results are available

public class ProcessFactorizedNumber

{

private int _ulNumber;

public ProcessFactorizedNumber(int number)

{ _ulNumber = number; }

public void FactorizedResults(IAsyncResult ar)

{

int factor1=0, factor2=0;
25 // Extract the delegate from the AsyncResult
FactorizingCallback fd = (FactorizingCallback) ((AsyncResult)ar). AsyncDelegate;

fd.EndInvoke(ref factorl, ref factor2, ar); // obtain the result

30 Console.WriteLine("On CallBack: Factors of {0} : {1} {2}", ulNumber,
factorl, factor2); // output the results

12



10

25

30

MS174304.1

} // end FactorizedResults

} // end ProcessFactorizedNumber

With the class ProcessFactorizedNumber described above, two possible variations
of calling the method are provided below. While two such variations are illustrated, it is
to be appreciated that a greater and/or lesser number of calling methods may be employed
in accordance with the present invention. In the first example, Async Variation 1, a valid
callback routine address is established and passed to the begin asynchronous operation
method, and thus the callback routine can be employed to invoke the processing
associated with ending the asynchronous call. In the second example, Async Variation 2,
no such valid callback address is passed to the begin asynchronous operation method,
thus the caller employs a different technique, waiting on the result object, to determine

when the target method has completed.

// Async Variation 1
// begin asynchronous method
// ProcessFactorizedNumber.FactorizedResults callback is called when call completes.

public void FactorizeNumberl()

// Client code

PrimeFactorizer pf = new PrimeFactorizer();
FactorizingCallback fd = new FactorizingCallback(pf.Factorize);
int factorizableNum = 1000589023, temp=0);

// Create an instance of the class that is going to called when the call completes

ProcessFactorizedNumber fc = new ProcessFactorizedNumber(factorizableNum);

>

// Define the AsyncCallback delegate
AsyncCallback cb = new AsyncCallback(fc.FactorizedResults);

/1 Create state object to be passed to the callback in the IAsyncResult object
Object state = new Object();

13



MS174304.1

// Asynchronously invoke the Factorize method on pf
// in this case, the invocation method (e.g., with callback established), determines

// the manner in which the end asynchronous method will be invoked

5 [AsyncResult ar = fd.Beginlnvoke(
factorizableNum,
ref temp,
ref temp,
cb,

10 state);
//
// other work
/...
3
// Async Variation 2

// waits for the result, does not employ callback
public void FactorizeNumber2()

{
/! Client code

PrimeFactorizer pf = new PrimeFactorizer();

FactorizingCallback fd = new FactorizingCallback(pf.Factorize);
int factorizableNum = 1000589023, temp=0;

25 // Create an instance of the class that is going to called when the call completes

ProcessFactorizedNumber fc = new ProcessFactorizedNumber(factorizableNum);

// Asynchronously invoke the Factorize method on pf
// in this case, with no callback address established, the target method will not
30 // invoke a callback upon method completion

[AsyncResult ar = fd.Beginlnvoke(

14



MS174304.1

factorizableNum,
ref temp,

ref temp,

null,

5 null);

/! therefore, the caller WAITS on the result object ar by employing a wait handler
ar.AsyncWaitHandle. WaitOne(10000, false);
if (ar.IsCompleted)
10 {
int factor1=0, factor2=0;

// call the asynchronous end operation method
fd.EndInvoke(ref factorl, ref factor2, ar); // obtain the result
Console. WriteLine("Sequencial : Factors of {0} : {1} {2}",

factorizableNum, factorl, factor2); // output the results

The code samples provided above illustrate two options available to a client for

initiating asynchronous operations: supplying a callback delegate when beginning

asynchronous operations and not supplying the callback delegate when beginning

asynchronous operation. Similarly, options are available to the client for completing
asynchronous operations. Four such options are to poll the status object (e.g.,
IAsyncResult.IsCompleted property) for completion, to attempt to complete the operation

25 prematurely (thereby blocking until the operation completes), to wait on a handle
provided by the result object (e.g., IAsyncResult WaitHandle instance) and to complete
the operation inside an asynchronous callback routine. The difference between waiting
and attempting to complete the operation prematurely is that the client can use timeouts
to wake up periodically and determine whether the target method has completed.

30 Although four options for completing asynchronous operations are described, it is to be

15



10

25

30

MS174304.1

appreciated that a greater and/or lesser number of options may be employed in
accordance with the present invention.

Turning now to Prior Art Fig. 2, state transitions produced in a conventional
synchronous calling system 200 are illustrated. At 250, a caller 210 that is running in a
first thread TH1, makes a synchronous call to a method 220. Before the call 250, the
thread TH1 is in a running state 260. At 252, thread TH1 associated with the caller 210
blocks (e.g., moves from running state 260 to blocked state 270) while the method 220 is
performed by a different thread (e.g., thread TH2) and runs to completion through 254.
At 256, the method 220 returns from the call at 250 and thus thread TH1 unblocks (e.g.,
moves from blocked state 270 to running state 260). While thread TH1 was blocked,
resources (e.g., memory, references) allocated to the thread TH1 vilere unavailable to
other threads, and thus system performance was negatively impacted. It would be
advantageous to not have the thread TH1 block, and thus the present invention provides
the pattern to facilitate converting synchronous calls to asynchronous calls.

Fig. 3 illustrates state transitions in a system 300 where a synchronous call has
been converted to an asynchronous call via a pattern generator. At 330, a caller 310 that
1s running in a first thread TH10 makes an asynchronous call to a method 320. Before
the call 330, the thread TH10 is in a running state 350. After the call 330, since a goal of
a begin asynchronous operation method associated with making the call 330 is to make
the call, and not to wait for the completion of the call, the thread TH10 can run to
completion without blocking due to asynchronous call processing. Thus, after the call at
330, the thread TH10 can move from a running state 350 to a finished state 360. Since
the thread TH10 has run to completion, resources associated with the thread TH10 can be
reclaimed, and are available for other threads, leading to advantages over conventional,
blocking, synchronous systems.

When the method 320, which runs in a second thread TH11 (that may be allocated
to the object implementing the method 320) completes, it returns control to the caller 310.
In one example of the present invention, at 340, a third thread TH12 then begins running
and performs processing associated with ending the asynchronous call. The thread TH12
thus can run to completion without blocking due to asynchronous call processing, and

thus can move from a running state 350 to a finished state 360, where resources

16



10

25

30

MS174304.1

associated with the thread TH12 can be reclaimed, again providing advantages over
conventional systems.

Fig. 4 illustrates a system 400 that facilitates asynchronous method calling via a
consistent pattern. The system 400 includes an asynchronous call initializer 410, an
asynchronous call completer 420, a callback routine 430, a result object 440, a state
object 450 and a state tracker 460. The system 400 facilitates a client caller 470 making
asynchronous calls to a target method 485 located on a server 480.

The asynchronous call initializer 410 may be, for example, code that begins
asynchronous method calling. Such code may be generated, for example, by a compiler
405 that examines synchronous method calling code associated with the client caller 470.
The compiler 405 can break the synchronous method call code associated with the client
caller 470 into constituent parts and thus produce components including, but not limited
to, the asynchronous call initializer 410, the asynchronous call completer 420, the
callback routine 430, the result object 440 and the state object 450. The asynchronous
call initializer 410 may accept inputs from the client caller 470 and forward them towards
the target method 485 via the method call queued in the thread pool 490. Furthermore,
the asynchronous call initializer 410 may also initialize the result object 440 and/or the
state object 450. The asynchronous call initializer 410 may also establish a callback
routine 430 whose address can be passed, for example, via the call queued in the thread
pool 490, to the target method 485 and/or the server 480, to facilitate invoking the
callback 430 upon completion of the target method 485.

The asynchronous call completer 420 may be, for example, code that completes
asynchronous method calling. Such code may be generated, for example, by the compiler
405. The asynchronous call completer 420 can accept results from the target method 485
and pass those results, along with an updated result object, to the client caller 470. Thus,
to the client caller 470 it appears as though a synchronous method call was made.
Similarly, to the target method 485 it appears as though a synchronous method call was
made. Thus, the present invention, by providing the asynchronous call initializer 410,
which accepts the inputs from the client caller 470, and by providing the call completer
420, which returns the results expected by the client caller 470, facilitates adding

asynchronous method call processing to systems, methods and/or classes that

17



MS174304.1

conventionally only have synchronous method call processing available, without

requiring the programmer of the client caller 470 or the programmer of the target method

485 to change their code. This provides advantages over conventional asynchronous

calling systems that require client caller code and/or target method code to be changed to
5 add asynchronous calling capabilities.

The asynchronous call initializer 410 can receive a request to begin processing
associated with making an asynchronous call to the target method 485, initialize the result
object 440 and/or state object 450 and then queue a target method call in a thread pool
490. The asynchronous call initializer 410 can then return control and the result object

10 440 to the client caller 470. In one example of the present invention that does not employ
the callback 430, the client caller 470 can then call the asynchronous call completer 420,
which can wait for the target method 480 to complete. Alternatively, the client caller 470
can arrange for the asynchronous call completer 420 to be invoked by the callback
routine 430 upon completion of the target method 485. The callback routine 430 invokes
the asynchronous call completer 420 and true asynchronous behavior is achieved. While
the asynchronous call initializer 410, the asynchronous call completer 420, the callback
routine 430 and/or the target method 485 are running, the state tracker 460 can be
updating the state object 450, so that processes (e.g., the client caller 420 process) can
track the state of the call.

Producing an asynchronous call initializer 410, an asynchronous call completer

420, a callback 430, a result object 440 and a state object 450 can be performed, in one

example of the present invention, in a compiler 405. Thus, requirements for compilers
that implement the present invention include, but are not limited to, emitting delegate
classes with Invoke, BeginInvoke and EndInvoke methods using the delegate signature
25 specified by the user. Such delegate classes may hold information that can be employed

to call a specific method on a specific object. Thus, conceptually, a delegate can be
considered a smart method pointer that facilitates calling a desired method (e.g., a
callback method to be called when the target method completes).

For example, referring again to the Factorizing delegate, the following Invoke,

30 Beginlnvoke and EndInvoke methods illustrated should be emitted by a compiler 405.

18



MS174304.1

class FactorizingCallback : delegate
{
public bool Invoke(
int factorizableNum,
5 ref int primefactorl,

ref int primefactor2);

// asynchronous call initializer
public IAsyncResult Beginlnvoke(
10 int factorizableNum,
ref int primefactorl,
ref int primefactor2,
AsyncCallback cb,
Object AsyncState

);

/ asynchronous call completer
public bool EndInvoke(
ref int primefactorl,

ref int primefactor2,

IAsyncResult ar);

In one example of the present invention, a compiler that has been configured to

interact with the present invention will produce the BeginInvoke method so that it

25 includes the IN parameters intended for the target method 485, includes the IN/OUT
parameters intended for the target method 485, includes by reference parameters intended
for the target method 485, takes an asynchronous callback routine (e.g., AsyncCallback)
and an asynchronous call state object (e.g., AsyncState) as last two parameters of the
method and returns an asynchronous result object (e.g., IAsyncResult). Similarly, the

30 compiler 405 should produce the EndInvoke method so that it includes IN/OUT

parameters intended for the target method 485, includes OUT parameters intended for the

19



MS174304.1

target method 485, includes pass by reference parameters intended for the target method
485, takes an asynchronous result object (e.g., IAsyncResult) as last parameter and
returns the original return type from the original method signature.

The following code illustrates example classes that implement the asynchronous

5 call method pattern in accordance with an aspect of the present invention. While the code

provides one specific example of the pattern as applied, the code is merely illustrative of
two example asynchronous call implementations of the present invention and it is to be
appreciated that other asynchronous call implementations, in other computer languages

may be employed in accordance with the present invention.

10 // Asynchronous Sample
using System;
using System.Threading;

using System.Runtime.Remoting;

/I Async delegate
public delegate bool FactorizingCallback(int factorizableNum,
ref int primefactorl,

ref int primefactor2);

// Class that factorizes the number

public class PrimeFactorizer
{
public bool Factorize(
int factorizableNum,
25 ref int primefactorl,
ref int primefactor2)
{
primefactor]l = 1;
primefactor2 = factorizableNum;
30

// Factorize using a low tech approach

20



MS174304.1

for (int i=2;i<factorizableNum;it++)

{
if (0 == (factorizableNum % 1))
{

5 primefactorl =1i;
primefactor2 = factorizableNum / i;
break;

}
}
10 if (1 == primefactorl )
return false;
else
return true;
}

// Class that receives a callback when results are available

public class ProcessFactorizedNumber

{

private int _ulNumber;

public ProcessFactorizedNumber(int number)

{
_ulNumber = number;
}
25 public void FactorizedResults(IAsyncResult ar)
{

int factor1=0, factor2=0;

// Extract the delegate from the AsyncResult
30 FactorizingCallback fd = (FactorizingCallback)((AsyncResult)ar). AsyncDelegate;

21



MS174304.1

// Obtain the result
// call the asynchronous call completer 420
fd.EndInvoke(ref factorl, ref factor2, ar);

5 // Output results
Console.WriteLine("On CallBack: Factors of {0} : {1} {2}",

_ulNumber, factorl, factor2);

10

// Class that shows variations of using async
public class Simple
{
// Async Variation 1
// The ProcessFactorizedNumber.FactorizedResults callback

// 1s called when the call completes.

public void FactorizeNumber1()

{
// Client code
PrimeFactorizer pf = new PrimeFactorizer(); // get instance
FactorizingCallback fd = new FactorizingCallback(pf.Factorize); // callback

int factorizableNum = 1000589023, temp=0;

25 // Create an instance of the class that is going to be called when the call completes

ProcessFactorizedNumber fc = new ProcessFactorizedNumber(factorizableNum);

// Define the AsyncCallback delegate
AsyncCallback cb = new AsyncCallback(fc.FactorizedResults);
30

// create state object

22



MS174304.1

Object state = new Object();

// Asynchronously invoke the Factorize method on pf
// calling the asynchronous call initializer 410 with the callback address established
5 // controls the target method to invoke the callback routine when it is done processing

IAsyncResult ar = fd.BeginInvoke(

factorizableNum,
ref temp,
ref temp,
10 cb,

state);

I

// Other work

..

/I Here, the thread runs to completion, with no blocking due to

/I asynchronous call processing

/I Async Variation 2
// Waits for the result, does not employ callback

public void FactorizeNumber2()

{
// Client code

PrimeFactorizer pf = new PrimeFactorizer();

25 int factorizableNum = 1000589023, temp=0;

// Create an instance of the class that is going to be called when the call completes

ProcessFactorizedNumber fc = new ProcessFactorizedNumber(factorizableNum);

30 // Asynchronously invoke the Factorize method on pf

// do not employ callback when calling the asynchronous call initializer 410

23



10

25

30

MS174304.1

IAsyncResult ar = fd. BeginInvoke(
factorizableNum,
ref temp,
ref temp,
null,

null);

// since no callback was employed, the asynchronous call initializer now
// will wait on a handle provided by the result object to determine when

// target method processing

// has completed, other methods illustrated below may include polling and
// prematurely attempting to complete the call

ar.AsyncWaitHandle. WaitOne(10000, false);

if (ar.IsCompleted)
{

int factor1=0, factor2=0;

// Obtain the result by calling the asynchronous call completer 420
fd.EndInvoke(ref factorl, ref factor2, ar);

// Output results returned form the asynchronous call completer 420
Console.WriteLine("Sequencial : Factors of {0} : {1} {2}",

factorizableNum, factorl, factor2);

// program entry point MAIN
public static void Main(String[] args)

{

24



MS174304.1

Simple simple = new Simple();
simple.FactorizeNumberl(); // make an asynchronous call using callback

// completion technique
simple.FactorizeNumber2(); // make an asynchronous call using waitable object

5 // completion technique

The sample code above illustrates two asynchronous calls made where changes to
the calling client calling technique and/or the target method implementation code were
10 not required, which illustrates ease of implementation advantages over conventional
systems.

Figs. 5 through 7 illustrate three different systems that employ three different
methods to control when end asynchronous processing methods are invoked. While three
such methods are illustrated, it is to be appreciated that a greater and/or lesser number of
methods can be employed by systems and/or methods implementing the present
invention. Thus, turning to Fig. 5, a system 500 for providing asynchronous method calls
via a common pattern is illustrated. A synchronous method call 510 intended for a target
method 520 is broken into constituent parts including an asynchronous begin method
530, an asynchronous end method 540 and a state object 560. The target method 520

may perform, for example, lengthy database lookups, and thus the client calling the target

method 520 may benefit from having the target method 520 called asynchronously. In

Fig. 5, an asynchronous call result poller 550 is employed to poll the state object 560 to
determine when the target method 520 has completed. Thus, rather than the client calling
the target method 520 blocking, polling (alone and/or in combination with voluntary

25 relinquishing of control and/or resources) may be employed to improve system
performance. Furthermore, by identifying a point in time when resources associated with
the target method 520 results are required, where such point in time can be monitored via
the state object 560, acquiring such resources can be delayed until after that point in time,
providing improvements in system performance. For example, if processing results

30 generated by the target method requires a large amount of memory and multiple

processors, then acquiring such resources can be performed in a just in time fashion,

25



10

25

30

MS174304.1

rather than pre-acquiring such resources and blocking while waiting for the target method
to complete. When the asynchronous call result poller 550 determines that the target
method 520 has completed, the asynchronous call result poller 550 can invoke the
asynchronous end method 540.

Turning now to Fig. 6, a system 600 for providing asynchronous method calls via
a common pattern is illustrated. A synchronous method call 610 intended for a target
method 620 is broken into constituent parts including an asynchronous begin method 630
and an asynchronous end method 640. The target method 620 may perform, for example,
lengthy numerical calculations, and thus the client calling the target method 620 may
benefit from having the target method 620 called asynchronously. In Fig. 6, an
asynchronous callback routine 650 is employed to control when asynchronous end
processing will be performed. When the target method 620 completes, the callback
routine 650 will be invoked, for example, by a runtime that receives a notification of the
target method 620 completing. Thus, rather than blocking the client calling the target
method 620, the asynchronous begin method 630 can run to completion, and thus release
its resources, leading to improvements in system performance. When the callback
routine 650 1s invoked, a separate thread may be employed to run the asynchronous end
method 640, again providing improvements in resource utilization.

Tumning to Fig. 7, a system 700 for providing asynchronous method calls via a
common pattern is illustrated. A synchronous method call 710 intended for a target
method 720 is broken into constituent parts including an asynchronous begin method
730, an asynchronous end method 740 and a result object 760. The target method 720
may perform, for example, numerous web image acquisitions, and thus the client calling
the target method 720 may benefit from having the target method 720 called
asynchronously. In Fig. 7, an asynchronous call result waiter 750 (e.g., a WaitHandle
class object) is employed to wait on the result object 760 to determine when the target
method 720 has completed. Thus, rather than blocking the client calling the target
method 720, wait processing, alone and/or in combination with voluntary relinquishing of
control and/or resources may be employed to improve system performance. When the
asynchronous call result waiter 750 determines that the target method 720 has completed,

the asynchronous call result waiter 750 can invoke the asynchronous end method 740.

26



10

25

30

MS174304.1

One example asynchronous call result waiter 750 can be associated with an object
of the WaitHandle class, which represents synchronous objects that allow multiple waits
in a runtime. The WaitHandle class may have public shared methods that include, but are
not limited to, a WaitAll method that facilitates waiting on a set of items, where all
members of the set are required to satisfy the wait condition, a WaitAny method that
facilitates waiting on a set of items, where any one of the set can satisfy the wait
condition, and a WaitOne method that facilitates waiting on one item. Thus, in the web
image example, the asynchronous begin method 730 may queue a plurality of image
retrieval calls to the target method 720 and then wait on one particular image retrieval
call to return, wait on any of a set of image retrieval calls to return and/or wait on an
entire set of image retrieval calls to return, before invoking the asynchronous end method
740.

Figs. 5 through 7 illustrated various methods for controlling when asynchronous
end methods could be invoked, which provides flexibility and customizability advantages
over conventional asynchronous calling systems that may not provide such flexible
asynchronous end method processing.

In view of the exemplary systems shown and described above, methodologies that
may be implemented in accordance with the present invention will be better appreciated
with reference to the flow charts of Figs. 8 through 12. While, for purposes of simplicity
of explanation, the methodologies are shown and described as a series of blocks, it is to
be understood and appreciated that the present invention is not limited by the order of the
blocks, as some blocks may, in accordance with the present invention, occur in different
orders and/or concurrently with other blocks from that shown and described herein.
Moreover, not all illustrated blocks may be required to implement a methodology in
accordance with the present invention.

The invention may be described in the general context of computer-executable
instructions, such as program modules, executed by one or more components. Generally,
program modules include routines, programs, objects, data structures, etc. that perform
particular tasks or implement particular abstract data types. Typically the functionality of

the program modules may be combined or distributed as desired in various embodiments.

27



10

25

30

MS174304.1

Furthermore, computer executable instructions operable to perform the methods
described herein may be stored on computer readable media.

Fig. 8 is a flow chart illustrating a method 800 for creating an asynchronous
method call, in accordance with an aspect of the present invention. At 810, general
initializations occur. Such initializations include, but are not limited to, allocating
memory, establishing pointers, establishing data communications, acquiring resources,
instantiating objects, and setting initial values for variables. At 820, code for a
synchronous call on a target method is received. At 830, the code of 820 passes through
a call conversion process, which can include breaking the code for the synchronous
method call into constituent parts and creating one or more asynchronous method call
code segments corresponding to the constituent parts. The constituent parts can include,
but are not limited to a begin operation that will not block due to asynchronous method
calling and an end operation that similarly will not block due to asynchronous method
calling.

At 840, a result object is created. The asynchronous result object can be
employed to hold results associated with the target method and/or results associated with
the asynchronous call processing, for example. At 850, an asynchronous call state object
is created. The asynchronous call state object can be employed to facilitate tracking and
logging state associated with the begin operation, the end operation and the target
method, for example. At 860, the target method is invoked using the asynchronous
method call code. Such invocation may be achieved by queuing a call to the target
method in a thread pool, for example. At 870, a determination is made concerning
whether there is another synchronous method call on a target method to convert. If the
determination at 870 is YES, then processing returns to 820, otherwise processing can
conclude.

Fig. 9 illustrates a method 900 that facilitates making asynchronous method calls
via a consistent pattern that employs a callback routine. At 910, general initializations
occur. Such initializations can include, but are not limited to, memory allocations, field
initializations, object initializations, thread acquisition and establishing data

communications, for example.

28



10

25

30

MS174304.1

At 920, a request from a calling client to perform processing associated with
beginning an asynchronous call to a target method is received. At 930, a state tracking
object is initialized. The state tracking object can be employed to facilitate tracking and
logging state associated with beginning asynchronous operations, ending asynchronous
operations and the target method processing, for example. At 940, a result object is
initialized. The result object can be employed to hold results associated with the target
method and/or results associated with the asynchronous call processing, for example. At
945, a callback routine is established. The callback routine can be employed to receive
notification of the completion of the target method and to invoke processing associated
with ending the asynchronous call to the target method. At 950, a call to the target
method is queued. For example, the call may be queued in a thread pool. At 960, control
and the result object are returned to the calling client, which can employ the result object
to determine the completion status of a begin asynchronous operation method, for
example. Since control is returned at 960, a first thread employed to perform the begin
asynchronous call processing of 910 through 960 can complete, freeing resources
associated with the thread resulting in reductions in system resource requirements over
conventional single threaded systems.

At 970, the callback routine is invoked upon receiving notification of the
completion of the target method. The callback routine may be invoked, for example, by a
runtime that monitors the completion status of the target method. At 980, the callback
routine calls a method to perform processing associated with ending the asynchronous
call. Such processing may be performed in a thread separate from a thread that was
employed to perform processing associated with beginning the asynchronous call, and
thus both threads may be made more computationally and/or memory efficient, providing
advantages over methods where one thread employed to perform both begin and end
processing would have blocked. At 990, control is passed to the calling client upon
completion of the processing associated with ending the asynchronous call to the target
method.

Fig. 10 illustrates a method 1000 that facilitates making asynchronous method
calls via a consistent pattern and a polling technique. At 1010, general initializations

occur. Such initializations can include, but are not limited to, memory allocations, field

29



10

25

30

MS174304.1

initializations, object initializations, thread acquisition and establishing data
communications, for example.

At 1020, a request from a calling client to perform processing associated with
beginning an asynchronous call to a target method is received. At 1030, a state tracking
object is initialized. The state tracking object can be employed to facilitate tracking and
logging state associated with beginning asynchronous operations, ending asynchronous
operations and the target method processing, for example. At 1040, a result object is
initialized. The result object can be employed to hold results associated with the target
method and/or results associated with the asynchronous call processing, for example. At
1050, a call to the target method is queued. For example, the call may be queued in a
thread pool. At 1060, control and the result object are returned to the calling client,
which can employ the result object to determine the completion status of a begin
asynchronous operation method, for example.

At 1070 the method 1000 begins polling a field in the state object of 1030. The
polled field may contain, for example, information concerning whether the target method
has completed. When the polling indicates that the target method has completed, and/or
that polling has proceeded beyond a pre-determined amount of time, at 1080 the method
1000 calls a method to perform processing associated with ending the asynchronous call.
At 1090, control is passed to the calling client upon completion of the processing
associated with ending the asynchronous call to the target method. Thus, Fig. 10
illustrates a polling method, as compared to the callback method of Fig. 9, to determine
when end asynchronous operations should be performed, providing flexibility advantages
over conventional systems.

Fig. 11 illustrates a method 1100 that facilitates making asynchronous method
calls via a consistent pattern and a blocking technique. At 1110, general initializations
occur. Such initializations can include, but are not limited to, memory allocations, field
initializations, object initializations, thread acquisition and establishing data
communications, for example.

At 1120, a request from a calling client to perform processing associated with
beginning an asynchronous call to a target method is received. At 1130, a state tracking

object is initialized. The state tracking object can be employed to facilitate tracking and

30



10

25

30

MS174304.1

logging state associated with beginning asynchronous operations, ending asynchronous
operations and the target method processing, for example. At 1140, a result object is
initialized. The result object can be employed to hold results associated with the target
method and/or results associated with the asynchronous call processing, for example. At
1150, a call to the target method is queued. For example, the call may be queued in a
thread pool. At 1160, control and the result object are returned to the calling client.

At 1170, the entity to which control and the result object were returned at 1160
may attempt to complete the asynchronous operation explicitly by calling a method to
perform processing associated with ending the asynchronous call. Such a call may block,
providing less than asynchronous behavior, if the target method has not completed by the
time the call at 1170 is processed. Thus, at 1180, the method 1100 determines whether
the target method has completed. If the determination at 1180 is NO, that the target
method has not completed, then at 1190, the method 1100 will block until the target
method has completed. If the determination at 1180 was YES, and/or after the target
method has completed and the block of 1190 has been lifted, at 1195, control and/or
results will be passed to the calling entity.

Thus, Fig. 11 illustrates a simple blocking method, whereas Fig. 10 illustrates a
polling method and Fig. 9 illustrates a callback method employed to determine when end
asynchronous operations should be performed, providing further flexibility advantages
over conventional systems.

Fig. 12 illustrates a method 1200 that facilitates making asynchronous method
calls via a consistent pattern and a waiting technique. At 1210, general initializations
occur. Such initializations can include, but are not limited to, memory allocations, field
initializations, object initializations, thread acquisition and establishing data
communications, for example.

At 1220, a request from a calling client to perform processing associated with
beginning an asynchronous call to a target method is received. At 1230, a state tracking
object is initialized. The state tracking object can be employed to facilitate tracking and
logging state associated with beginning asynchronous operations, ending asynchronous
operations and the target method processing, for example. At 1240, a result object is

initialized. The result object can be employed to hold results associated with the target

31



10

25

30

MS174304.1

method and/or results associated with the asynchronous call processing, for example. At
1250, a call to the target method is queued. For example, the call may be queued in a
thread pool. At 1260, control and the result object are returned to the calling client,
which can wait on the result object to determine the completion status of the target
method and to control when to call an end asynchronous method, for example.

At 1270, the method 1200 voluntarily relinquishes control and/or resources and
goes to sleep. After a pre-determined period of time, and/or upon receiving a signal
associated with the entity upon which the method 1200 is waiting, at 1280, the method
1200 wakes up and at 1285 makes a determination concerning whether the target method
has completed. By way of illustration and not limitation, the method 1200 may query a
field in the state object of 1230 to determine whether the target method has completed. If
the determination at 1285 is NO, that the target method has not completed its processing,
then the method 1200 returns to 1270 where it will repeat the waiting sequence. But if
the determination at 1285 is YES, that the target method has completed, then at 1290, a
call to end the asynchronous operation will be made and at 1295 control and/or results
from the target method can be returned to the calling entity.

Thus, Fig. 12 illustrates a waiting method, whereas Fig. 11 illustrates a simple
blocking method, Fig. 10 illustrates a polling method and Fig. 9 illustrates a callback
method employed to determine when end asynchronous operations should be performed,
providing even further flexibility advantages over conventional systems.

In order to provide additional context for various aspects of the present invention,
Fig. 13 and the following discussion are intended to provide a brief, general description
of one possible suitable computing environment 1310 in which the various aspects of the
present invention may be implemented. It is to be appreciated that the computing
environment 1310 is but one possible computing environment and is not intended to limit
the computing environments with which the present invention can be employed. While
the invention has been described above in the general context of computer-executable
instructions that may run on one or more computers, it is to be recognized that the
invention also may be implemented in combination with other program modules and/or
as a combination of hardware and software. Generally, program modules include

routines, programs, components, data structures, etc. that perform particular tasks or

32



10

25

30

MS174304.1

implement particular abstract data types. Moreover, one will appreciate that the inventive
methods may be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, minicomputers, mainframe computers, as
well as personal computers, hand-held computing devices, microprocessor-based or
programmable consumer electronics, and the like, each of which may be operatively
coupled to one or more associated devices. The illustrated aspects of the invention may
also be practiced in distributed computing environments where certain tasks are
performed by remote processing devices that are linked through a communications
network. In a distributed computing environment, program modules may be located in
both local and remote memory storage devices. Additionally, the illustrated aspects can
be reproduced in a variety of computer languages and runtime environments.

Fig. 13 illustrates one possible hardware configuration to support the systems and
methods described herein. It is to be appreciated that although a standalone architecture
is illustrated, that any suitable computing environment can be employed in accordance
with the present invention. For example, computing architectures including, but not
limited to, stand alone, multiprocessor, distributed, client/server, minicomputer,
mainframe, supercomputer, digital and analog can be employed in accordance with the
present invention.

With reference to Fig. 13, an exemplary environment 1310 for implementing
various aspects of the invention includes a computer 1312, including a processing unit
1314, a system memory 1316, and a system bus 1318 that couples various system
components including the system memory to the processing unit 1314. The processing
unit 1314 may be any of various commercially available processors. Dual
microprocessors and other multi-processor architectures also can be used as the
processing unit 1314,

The system bus 1318 may be any of several types of bus structure including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of commercially available bus architectures. The computer memory 1316
includes read only memory (ROM) 1320 and random access memory (RAM) 1322. A

basic input/output system (BIOS), containing the basic routines that help to transfer

33



10

25

30

MS174304.1

information between elements within the computer 1312, such as during start-up, is
stored in ROM 1320.

The computer 1312 may further include a hard disk drive 1324, a magnetic disk
drive 1326, e.g., to read from or write to a removable disk 1328, and an optical disk drive
1330, e.g., for reading a CD-ROM disk 1332 or to read from or write to other optical
media. The hard disk drive 1324, magnetic disk drive 1326, and optical disk drive 1330
are connected to the system bus 1318 by a hard disk drive interface 1334, a magnetic disk
drive interface 1336, and an optical drive interface 1338, respectively. The computer
1312 typically includes at least some form of computer readable media. Computer
readable media can be any available media that can be accessed by the computer 1312.
By way of example, and not limitation, computer readable media may comprise computer
storage media and communication media. Computer storage media includes volatile and
nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other magnetic storage devices, or any other
medium which can be used to store the desired information and which can be accessed by
the computer 1312. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data signal
such as a carrier wave or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a signal that has one or more of
its characteristics set or changed in such a manner as to encode information in the si gnal.
By way of example, and not limitation, communication media includes wired media such
as a wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above should also be
included within the scope of computer readable media.

A number of program modules may be stored in the drives and RAM 1322,
including an operating system 1340, one or more application programs 1342, other

program modules 1344, and program non-interrupt data 1346. The operating system

34



10

25

30

MS174304.1

1340 in the computer 1312 can be any of a number of commercially available operating
systems.

A user may enter commands and information into the computer 1312 through a
keyboard 1348 and a pointing device, such as a mouse 1350. Other input devices (not
shown) may include a microphone, an IR remote control, a joystick, a game pad, a
satellite dish, a scanner, or the like. These and other input devices are often connected to
the processing unit 1314 through a serial port interface 1352 that is coupled to the system
bus 1318, but may be connected by other interfaces, such as a parallel port, a game port, a
universal serial bus (“USB”), an IR interface, etc. A monitor 1354, or other type of
display device, is also connected to the system bus 1318 via an interface, such as a video
adapter 1356. In addition to the monitor, a computer typically includes other peripheral
output devices (not shown), such as speakers, printers etc.

The computer 1312 may operate in a networked environment using logical and/or
physical connections to one or more remote computers, such as a remote computer(s)
1358. The remote computer(s) 1358 may be a workstation, a server computer, a router, a
personal computer, microprocessor based entertainment appliance, a peer device or other
common network node, and typically includes many or all of the elements described
relative to the computer 1312, although, for purposes of brevity, only a memory storage
device 1360 is illustrated. The logical connections depicted include a local area network
(LAN) 1362 and a wide area network (WAN) 1364. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 1312 is connected to
the local network 1362 through a network interface or adapter 1366. When used in a
WAN networking environment, the computer 1312 typically includes a modem 1368, or
is connected to a communications server on the LAN, or has other means for establishing
communications over the WAN 1364, such as the Internet. The modem 1368, which may
be internal or external, is connected to the system bus 1318 via the serial port interface
1352. In a networked environment, program modules depicted relative to the computer
1312, or portions thereof, may be stored in the remote memory storage device 1360. It
will be appreciated that the network connections shown are exemplary and other means

of establishing a communications link between the computers may be used.

35



10

25

30

MS174304.1

Fig. 14 is a schematic block diagram of a sample computing environment 1400
with which the present invention may interact. The system 1400 includes one or more
clients 1410. The clients 1410 may be hardware and/or software (e.g., threads, processes,
computing devices). The clients 1410 may house threads that desire to make
asynchronous calls by employing the present invention, for example. The system 1400
also includes one or more servers 1430. The servers 1430 may also be hardware and/or
software (e.g., threads, processes, computing devices). The servers 1430 may house
threads to perform target methods that are to be called asynchronously by employing the
present invention, for example. A client 1410 and a server 1430 may communicate, for
example, via a data packet 1470. Since the client/server communication concerns the
asynchronous operation of a synchronous method call on a target server method, the data
packet 1470 may include, for example, a first field that holds information related to
identifying the synchronously called target method and second fields that hold input
parameters for the target method. Furthermore, the data packet 1470 may also include a
third field that holds information related to a callback routine to be invoked when the
target method completes and fourth fields for parameters returned from the
synchronously called target method.

The system 1400 includes a communication framework 1450 that can be
employed to facilitate communications between the clients 1410 and the servers 1430.
Such a communication framework may house remoting features and/or a thread pool, for
example. The clients 1410 are operably connected to one or more client data stores 1415
that can be employed to store information local to the clients 1410 (e.g., synchronous
calling code, asynchronous calling code). Similarly, the servers 1430 are operably
connected to one or more server data stores 1440 that can be employed to store
information local to the servers 1430 (e.g., target methods).

Turning now to Fig. 15, one example of the operation of an input/output
application 1500 employing asynchronous call code generated by the present invention is
illustrated. A synchronous call 1510 may be presented to an input/output system 1520.
The input/output system 1520 may have, for example, a stream base class and a stream
subclass for a backing store (e.g., a file on a file system, a network connection, etc.) that

can be opened in either synchronous or asynchronous mode. One problem with

36



10

25

30

MS174304.1

conventional systems is that typically a stream may only be opened for either
synchronous or asynchronous input/output. Thus, there can be negative impacts on
performance if an open method does not match an access method. But by employing a
pattern generator 1540 provided by the present invention, a user may programmatically
open a stream in one manner, with the pattern generator 1540 facilitating producing
asynchronous method code 1550 related to synchronous method code 1530 that can
account for mismatched open/access pairs thus allowing a client of the stream subclass to
use the stream without having to know whether the stream was opened synchronously or
asynchronously, which may improve system performance.

For example, the stream base class may have synchronous method code 1530
(e.g., int Read (byte[], int, int)) and the pattern generator 1540, acting upon the
synchronous method code 1530 with data stored in the pattern data store 1560 may
facilitate producing related asynchronous calling code by producing, for example, a begin
async operation 1570 (e.g., IAsyncResult BeginRead(byte[], int, int, AsyncCallback,
Object state)), an end async operation 1572 (e.g., int EndRead(TasyncResult ar)) a state
object 1574 and a result object 1576. The stream subclass may provide an
implementation of either the synchronous or asynchronous methods, and the stream base
class default implementation may call the other methods. This facilitates authoring a
stream subclass with support for asynchronous behavior without extraneous development.

Turning now to Fig. 16, an example of the operation of a web server application
1600 employing asynchronous call code generated by the present invention is illustrated.
A plurality of synchronous calls 1610 may be presented to a web server system 1620 to,
for example, retrieve a number of images to be displayed on a web page. Acquiring such
images may consume a period of time during which it would be beneficial to not have the
calling entity blocked. The web server system 1620 may have, for example, a protocol
handling base class that, due to the inherently synchronous nature of the web, only has
synchronous calling capability via synchronous method code 1630. By employing a
pattern generator 1640 provided by the present invention, a user may produce
asynchronous method code 1650 related to the synchronous method code 1630 that can

provide asynchronous calling capability to the previously synchronous bound class.

37



10

MS174304.1

For example, the protocol handling base class may have synchronous method
code 1630 (e.g., void ProcessRequest(HttpContext context)) and the pattern generator
1640, acting upon the synchronous method code 1630 with data stored in the pattern data
store 1660 may facilitate producing related asynchronous calling code by producing, for
example, a begin async operation 1670 (e.g., IAsyncResult
BeginProcessRequest(HttpContext context, AsyncCallback cb, Object state)), an end
async operation 1672 (e.g., void EndProcessRequest(lasyncResult ar)), a state object
1674 and a result object 1676. Thus, by employing the asynchronous method code 1650,
a single thread could be employed to generate the plurality of image acquisition requests
without having the thread block on each acquisition request, mitigating performance
degradation associated with such serial blocking encountered in conventional systems.

What has been described above includes examples of the present invention. It is,
of course, not possible to describe every conceivable combination of components or
methodologies for purposes of describing the present invention, but one of ordinary skill
in the art may recognize that many further combinations and permutations of the present
invention are possible. Accordingly, the present invention is intended to embrace all
such alterations, modifications and variations that fall within the spirit and scope of the
appended claims. Furthermore, to the extent that the term “includes” is used in either the
detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is interpreted when employed as a

transitional word in a claim.

38



	2001-06-28 Specification

